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Abstract. High dimensional engineered features have yielded high per-
formance results on a variety of visual recognition tasks and attracted
significant recent attention. Here, we examine the problem of expres-
sion recognition in static facial images. We first present a technique to
build high dimensional, ∼ 60k features composed of dense Census trans-
formed vectors based on locations defined by facial keypoint predictions.
The approach yields state of the art performance at 96.8% accuracy for
detecting facial expressions on the well known Cohn-Kanade plus (CK+)
evaluation and 93.2% for smile detection on the GENKI dataset. We also
find that the subsequent application of a linear discriminative dimen-
sionality reduction technique can make the approach more robust when
keypoint locations are less precise. We go on to explore the recognition
of expressions captured under more challenging pose and illumination
conditions. Specifically, we test this representation on the GENKI smile
detection dataset. Our high dimensional feature technique yields state of
the art performance on both of these well known evaluations.

Keywords: Facial expression recognition · Smile detection · High-dime-
nsional feature · Census transformation · Deep learning · GENKI · CK+

1 Introduction

Local binary patterns (LBPs) [1] are well known texture descriptors that are
widely used in a number of applications. LBP features have been found to be
particularly effective for face related applications [2]. As an example, high dimen-
sional features based on LBPs have yielded highly competitive results on the well
known Labeled Faces in the Wild face verification evaluation [3,4].

We are interested here in recognizing facial expressions in static imagery.
Facial expression analysis can be a particularly challenging problem, especially
when using imagery taken under “in the wild” conditions as illustrated by the
recent Emotion Recognition in the Wild Challenge [5]. Here we examine both
controlled environment facial expression analysis and an “in the wild” prob-
lem through evaluations of our proposed method using the Extended Cohn-
Kanade (CK+) database [6,7] and the GENKI-4K smile detection evaluation.
The CK+ database is a widely used standard evaluation dataset containing acted
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expressions. The expressions to be recognized are based on Ekman’s six basic
universal categories of: happiness, sadness, surprise, fear, anger, and disgust [8].
The GENKI-4K [9] dataset contains comparatively low resolution images har-
vested from the web.

We provide a number of technical contributions in this paper. First, we pro-
vide a formulation of high dimensional features that is different from other stan-
dard formulations. Our descriptor is a high dimensional feature vector in which
each dimension consists of the bits derived from Census transformation. Fea-
tures are obtained based on image patches centered on facial keypoints. We use
a slight variant of LBPs known as the Census transform [10]. To the best of our
knowledge this representation yields the highest known performance on CK+
using the same evaluation criteria as in [7].

We go on to adapt our technique to be more robust to inaccurately localized
facial keypoints using a multi-resolution technique and local Fisher discriminant
analysis (LFDA) [11] - a recently proposed extension to the widely used Fisher
discriminant analysis technique. The issue of keypoint localization accuracy is
particularly important when turning to the problem of recognition in the wild,
but even in controlled environments there are well known degradations in perfor-
mance when per subject keypoint training data is not used to fit a facial keypoint
model. Turning to the problem of smile recognition using in the wild GENKI
imagery, it is much harder to detect a large number of keypoints due to the qual-
ity and variability of the imagery. For the GENKI evaluation in particular we
are however able to detect five keypoints reliably. Adapting our method to this
setting, here again our proposed method yields the highest known performance
of which we are aware on this well known evaluation.

The remainder of this manuscript is structured as follows: We provide a
brief review of some other relevant work in section 2, but also discuss other
relevant work throughout this document. In section 3 we present our novel fea-
ture extraction technique based on high dimensional binary features, multi-scale
patches and discriminative dimensionality reduction. In section 4 we benchmark
our high dimensional feature vector technique using CK+, examining experi-
mentally the issue of facial landmark prediction quality, its impact on prediction
performance and our motivations for extending our basic formulation to include
multi-scale analysis and discriminative dimensionality reduction. We then pro-
vide our experiments on GENKI-4K, where we also compare directly with a
state of the art convolutional neural network technique that does not rely on
keypoints. We provide conclusions and additional discussion in section 5.

2 Other Relevant Work

A number of modern, state of the art approaches to expression detection are
based on handcrafted features, such as: Local binary patterns or LBP features
[1], Histograms of oriented gradients or HOG features [12], or Lowe’s Scale-
invariant feature transform (SIFT) descriptors [13]. For example, the influential
work of Shan et al. [14] studied histograms of LBP features for facial expression
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recognition. They introduced Boosted-LBP by using AdaBoost [15] for feature
selection. Their experiments showed that LBP features are powerful for low reso-
lution images. Dahmane et al. [16] built face representation based on histograms
of HOG features from dense grids. Their representation followed by nonlinear
SVM outperforms an approach based on uniform LBP. Other work has used
SIFT features for facial expression analysis [17], yielding competitive results on
CK+.

Techniques based on convolutional neural networks have also yielded state of
the art performance for the task of emotion recognition, including top performing
results on competitive challenges [18–20]. The CK+ data and classification tasks
were introduced in Lucey et al. [7]. They provided both the additional facial
examples that were used to extend the original Cohn-Kanade (CK) dataset of [6],
yielding the combined dataset known as CK+ as well a number of experimental
analyses. They provided a variety of baseline experiments and a state of the
art result at the time in which they combine a landmark based representation
(SPTS) and appearance features both before and after shape normalization using
landmarks, which they refer to as CAPP features. They combine two different
classifiers for landmarks and appearance using a logistic regression on the outputs
of the classifiers. This procedure yields their best result with an average accuracy
of 83.33%.

Jeni et al. [21] used shape only information for expression recognition exper-
iments with CK+; however, they removed the sequences with noisy landmarks.
The work of Sikka et al. [17] compares the performance for a variety of tech-
niques on the CK+ expression recognition task, including the well known uniform
LBP histogram technique in [14] which they state yields 82.38% ±2.34 average
accuracy. They state that their own bag of words architecture yields 95.85%
±1.4 average per subject accuracy using a leave one subject out evaluation pro-
tocol. Other work has also explored the problem of smile detection using the
GENKI-4K data. Jain et al. [22] report 92.97% accuracy using multi-scale gaus-
sian derivatives combined with an SVM, but they removed ambiguous cases and
images with serious illumination problems (423 removed faces). Shan et al. [23]
report 89.70% ±0.45 using an Adaboost based technique; however, they man-
ually labeled eye positions which is not practical for many applications. Liu et
al. [24] report 92.26% ±0.81 accuracy and also provide the splits used for their
evaluation. We therefore use their splits in our evaluation below to permit our
technique to be directly compared to their results.

3 Our Models

In this section, we present our technique which we show later is capable of
obtaining state of the art results on both the CK+ and GENKI evaluations. We
also present a deep neural network approach for expression recognition that we
shall use for additional comparisons on the GENKI evaluation.
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3.1 High Dimensional Engineered Features

Our high dimensional feature approach is conceptually simple. We extract a form
of local binary pattern known as the Census transform for each pixel found within
small image patches, each centered on a facial keypoint. Unlike previous work
which typically creates histograms of LBPs, here we create our feature vector by
concatenating the bits for each pixel of the image patch into a binary vector. We
also concatenate bits obtained from patches extracted at multiple scales centered
on the keypoints. As far as we are aware this is different from previous uses
of LBP techniques which have relied on histogramming operations. This high
dimensional binary feature vector is then projected into a smaller dimensional
space via principal component analysis (PCA), followed by a recently proposed
variation of multiclass Fisher Discriminant Analysis (FDA) known as local FDA
or LFDA [11]. The resulting vector is then used within a Support Vector Machine
(SVM). There are a number of choices to be made throughout this processing
and classification pipeline and we search over key subsets of these choices using
cross validation techniques. We discuss the different steps of our procedure in
more detail below.

The Census Transform. The Census transform [10] is computed as fol-
lows. If p = {u, v} is the index of a pixel and I(p) is its intensity, define
ξ(p,p′) = 1, if I(p′) < I(p); otherwise ξ(p,p′) = 0. The Census transform
simply concatenates the bits obtained from comparisons using a fixed ordering
of pixels within spatial neighborhood around the pixel. The result is a bit string
with ones representing the pixels that are less than the value of the central pixel.
Using

⊗
to denote concatenation, the census transform for the pixel at location

p = {u, v} is simply

Ic(p) =
n⊗

j=−n

m⊗

i=−m

ξ(I(u, v), I(u + i, v + j)), (1)

typically computed using a window of size (2m+1)×(2n+1). In other words, for
a given image patch the CT simply compares each pixel with the center pixel.
If its value is greater than the center pixel’s value it assigns 0 and 1 otherwise.
Common window sizes are 3 and 5. In our experiment, we used 3 as the window
size which allows the information to be stored in an 8-bit binary number if
desired. The ability to store such descriptors using a binary encoding means
that even if our descriptor is of extremely high dimension the information can
be stored in a highly compact format. Various other operations using these types
of binary descriptors can also be implemented very efficiently.

Keypoint Guided Feature Extraction. As outlined above, we construct our
descriptors by cropping small patches out of the larger facial image, applying the
Census transform to each pixel for each patch and concatenating the resulting
bits into a high dimensional vector. In our experiment below, each scale yields
19,992 features for CK+ and 4,312 for GENKI, due to the different number
of keypoints produced by different methods. Patches are extracted centered on
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each landmark, excluding the face contour. The patches have two parameters
that are optimized by cross validation: patch width, defined in proportion to
face size and the patch size. The optimal values for our initial CK+ experiment
for example were 2/5ths of the face size and 9 pixels in width respectively. Each
cropped patch is also resized before computing the Census transform allowing
us to control both the dimensionality and the size or spatial extent of the patch
separately. We will also present experiments where we extend this approach by
extracting patches at each keypoint at three different scales. Depending on the
experiment this produces about 60k features.

To obtain keypoints there are a variety of automated placement techniques
which can be applied depending on the circumstances. For example, the CK+
dataset comes with landmark positions that were estimated by fitting an Active
Appearance Model (AAM) [25]. AAMs can yield state of the art performance
when labeled keypoints have been provided to train models for each subject of
interest. For our first set of experiments we use the landmarks provided with
the CK+ data. However, AAMs yield poor performance when per subject train-
ing data is unavailable. In many real world situations it is impractical to label
keypoints for each subject. For this reason there has been a great deal of recent
activity focused towards improving alternative approaches that are not identity
dependent. For our second CK+ experiments we use the structured max mar-
gin technique of [26]. For GENKI experiments we use the convolutional neural
network cascade technique in [27].

Dimensionality Reduction. As we shall see in our experimental work, our
high dimensional Census feature technique can yield encouraging results on
the CK+ evaluation. However, Working with high dimensional vectors can be
impractical for many applications. We therefore employ a two phase dimension-
ality reduction procedure based on an initial projection using PCA followed by
LFDA [11]. LFDA obtains a discriminative linear projection matrix through min-
imizing an objective function of the same form as FDA. The underlying problem
is therefore also equivalent to solving a generalized eigenvalue problem. More
precisely, a projection matrix M is obtained from

arg max
M

Tr
{

(MTSWM)−1MTSBM
}

, (2)

where there are i = 1, . . . , n feature vectors xi with class labels Ci, given by
c = 1, . . . , nc class indices, and

SW =
1
2

n∑

i,j=1

Wi,j(xi − xj)(xi − xj)T , (3)

which defines a local within-class scatter matrix using

Wi,j =
{
Ai,j Ci = Cj = c
0 Ci �= Cj ,

(4)
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Fig. 1. The architecture of the convolutional neural network used in our experiments

and a local between-class scatter matrix defined by

SB =
1
2

∑

i,j=1

Bi,j(xi − xj)(xi − xj)T , (5)

where

Bi,j =
{
Ai,j

(
1
n − 1

nc

)
Ci = Cj = c

1
n Ci �= Cj ,

(6)

and for both types of local scatter matrix one uses an affinity matrix A defined,
for example by

Ai,j = exp(‖xi − xj‖2). (7)

3.2 A Deep Convolutional Neural Network Approach

We shall also compare with a deep convolutional neural network approach to
expression recognition based on the framework presented in [28] which was used
to win the recent ImageNet challenge. The particular architecture we used here
for expression recognition is shown in Fig. 1. A similar deep neural network
architecture and training approach for expression recognition in the wild was
used in [18] to win the recent Emotion Recognition in the Wild Challenge [29]
where the goal was to predict expressions in short clips from movies. In [18]
the deep network was only trained on the Toronto Face Database TFD [30] - a
large set of different standard expression datasets including Cohn-Kanade and
a dataset mined from Google image search results [31] containing 35,887 images
tagged with the corresponding emotion categories. In contrast for our GENKI
experiments here we do not use additional training data.

Since this implementation and architectural variants of it have won a number
of competitive challenges we believe the approach is representative of a state
of the art deep neural network approach for expression recognition with wild
imagery. We therefore use it here to provide a point of comparison for our GENKI
experiments.
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4 Experiments and Results

Here we provide two sets of experiments. First, we present experiments using
the standard CK+ evaluation and our high dimensional feature technique. We
examine in particular the sensitivity of our approach to keypoint localization
quality, the results of which partly motivated the development of the multi-
resolution extensions to our basic approach - making it more robust to inaccu-
rate keypoints. We then present results for the smile detection problem using
the GENKI-4K dataset, comparing with the deep convolutional neural network
approach presented above.

For our last CK+ experiment with noisy keypoints and for our GENKI exper-
iment we apply our full approach in which multi-scale patches are extracted and
feature descriptors are reduced in dimensionality using LFDA. The dimension-
ality reduction is applied on a per patch basis. For PCA we search in the region
of dimension reductions that capture 95% of the variance. For LFDA we search
in the region of reductions that reduce the final output to 5-20% of the original
dimensionality. It is interesting to note that the multi-scale descriptor has about
60k dimensions for our CK+ experiment and is reduced to about 6k dimensions.

4.1 Experiments on CK+

The CK+ database [6,7] is a widely used benchmark for evaluating emotion recog-
nition techniques. It is perhaps more precise to characterize the emotion recogni-
tion taskusingCK+as facial expression recognition since themajority of sequences
were acted.The evaluation includes image sequenceswith 6 basic expressions. Each
sequence starts with a neutral face and ends with an image showing the most exag-
gerated variation of a given expression.CK+has large variation in gender, ages and
ethnicity. The database consists of 593 image sequences of 123 different subjects
and covers both spontaneous and acted expressions. Only one expression ”Happy”
is spontaneous and it’s because some actors smiled during video recordings. CK+
dataset includes labels for expressions, landmarks and labels for the Facial Action
Coding System (FACS). We focus here on the expression recognition task.

We use the CK+ data in our work to benchmark and evaluate our approach
on a standard dataset before tackling data that is of principal interest to our
work in which expressions are exhibited by subjects in natural and spontaneous
situations. We begin by placing our high dimensional feature technique in context
with the state of the art by showing the complete result of Lucey et al.’s top
performing SPTS+CAPP technique discussed in more detail in our literature
review [7]. To evaluate our technique performance when high precision keypoints
are not available we then show the impact of using realistic keypoint predictions
from the keypoint predictor in [26].

High Dimensional Binary Feature Vectors. For our first experiment here
we created a high dimensional binary vector from densely sampled keypoint
locations as discussed in section 3. We give the resulting vector to a linear support
vector machine using the implementation in [32]. We perform leave one subject
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Fig. 2. (left) A confusion matrix for expression detection from the SPTS + CAPP
result of Lucey et al. [7]. The average per class recognition rate was 83.3%. The matrix
is row normalized as in [7]. (right) The confusion matrix for expression detection on
CK+ using our high dimensional binary features. The average per class accuracy is
96.8%. The overall average accuracy is 98.2%. We give the number of examples per
class in the column on the right.

out experiments and optimize hyperparameters using an inner cross validation
procedure within the training set. Results are shown in Fig. 2 (right). We are
aware of no other published result with higher performance. The best result of
which we are aware on CK+ also gives an accuracy of 96% [21]; however, they
exclude five subjects from their evaluation. Table 1 provides comparison of our
results to other methods.

The Impact of Noisy Keypoints. As we have discussed, in many practical
situations it is not possible to obtain highly accurate keypoints such as those
possible when using an AAM trained on labeled examples of each subject. For
this reason we perform the same experiment above but using the keypoint detec-
tor of [26]. As seen in Fig. 3 (left), there is a drop in performance (i.e. 90.0%
vs 96.8%), but it is not as dramatic as one might expect due in part to the
improved quality for subject independent keypoint predictions afforded by [26].

The Impact of Multiscale Patches. We then evaluated the hypothesis that
the use of multiscale patches centered on each keypoint could make the approach
more robust to keypoint localization errors. The result of this experiment is
shown in Fig. 3 (right). While we cannot recover the original performance, we
do see a slight boost in performance over the original single resolution technique.

4.2 Smile Detection Experiments

The GENKI-4K dataset [9,33] consists of 4,000 facial images labelled with pose
and smile content. The images are relatively low resolution and in jpeg for-
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Fig. 3. (left) Confusion matrix for expression detection on CK+ using our high dimen-
sional binary features, but based on less accurate keypoints. The average per class accu-
racy is 90.0%. The overall average accuracy is 93.4%. (right) The average per class
accuracy when using our multi-scale strategy increases to 91.3% as does the average
accuracy, which increases to 94.5%.

Table 1. CK+ Experiments: Comparison and summary

Method %

Lucy et al. (2010) [average accuracy] using a landmark based 83.33
representation and appearance features [7]
Sikka et al. (2012) [average accuracy] LBP histogram architecture [14,17] 82.38
Sikka et al. (2012) [average per subject accuracy] bag of words [17] 95.85

Our technique [average accuracy], accurate keypoints 96.8
Our technique [average class accuracy], accurate keypoints 98.2
Our technique [average accuracy], noisy keypoints 94.5

mat. This dataset has large variations in pose, illumination and ethnicity. We
extracted faces from the original images using a combination of the opencv’s
Haar cascade face detection [34] and the convolutional neural network cascade
of [27]. Where these detectors failed to detect any face, we just kept the original.

The resolution of imagery in this dataset was such that we were only able to
detect a set of 5 keypoints reliably for our high dimensional feature technique. In
order to cover the whole face we computed 6 more points located between eyes,
mouth corners and the nose. We provide a comparison with the convolutional
neural network (Convnet) architecture discussed in section 3.2, which does not
rely on keypoints. For both our high dimensional feature technique and our
ConvNet experiments we split the dataset into 4 equal folds using the precise
splits defined in [24].

For each experiment with the convolutional neural network, we used ran-
dom cropping with a 4-pixel border for 48×48 images. Also images were flipped
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horizontally with a probability of 0.5 at each epoch. The model with no
pre-processing yielded 91.5% 1-fold accuracy. We explored preprocessing with
isotropic smoothing [35,36], yielding 91.5%, and histogram equalization on the
grayscale imagery, which yielded 91.7%. From these experiments we found
that these preprocessing options did not alter performance in a substantial way.
We therefore ran a full four fold experiment using grayscale faces with no pre-
processing at 96×96 pixel resolution, which yielded 92.97% ±0.71 accuracy.

Using our complete high dimensional feature technique consisting of both
the initial feature construction and including the use of multi-resolution patches
and the local fisher discriminant analysis step, followed by the application of an
SVM with radial basis function kernel for the final classification, we were able
to achieve 93.2% ±0.92 average accuracy. We place our results here in context
with prior work in Table 2.

Table 2. GENKI-4K Experiments (Accuracies)

Method %

Shan et al. (2012), using an Adaboost based technique; 89.70
however, they manually labeled eye positions [23]
Jain et al. (2013), using multi-scale Gaussian derivatives 92.97
combined with an SVM; however, they removed ambiguous cases &
images with serious illumination problems (423 faces removed) [22]
Liu et al. (2013), using HOG features and SSL [24] 92.29
Liu et al. (2013), with only labeled data 91.85

Our ConvNet at 48 × 48 pixel resolution (no preprocessing) 91.5
Our ConvNet at 96 × 96 pixel resolution (±0.71) 93.0
Our high dimensional LBP technique (±0.92) 93.2

5 Final Conclusions and Discussion

It is important to emphasize that traditionally LBP based techniques have used
histogramming operations to create underlying feature representations. In con-
trast, in our work we do not compute histograms and use bits directly. For exam-
ple previous work [17] has given an accuracy of 82.38% on CK+ for a traditional
LBP approach using histograms computed on grid locations defined by a face
bounding box using a boosted SVM classification approach. Since we use LFDA
to learn a discriminative reduced dimensionality space, our work thus also blurs
the lines between traditional notions of engineered feature representations and
learned representations. Since we use LBP-like descriptors defined by keypoint
locations, in a sense we also blur the lines between keypoint vs. non-keypoint
based representations. We hope that our results here will help motivate further
work exploring other alternative approaches using LBP descriptors as underlying
input representations.
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