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ABSTRACT
Deep learning based approaches to facial analysis and video
analysis have recently demonstrated high performance on a
variety of key tasks such as face recognition, emotion recog-
nition and activity recognition. In the case of video, infor-
mation often must be aggregated across a variable length
sequence of frames to produce a classification result. Prior
work using convolutional neural networks (CNNs) for emo-
tion recognition in video has relied on temporal averag-
ing and pooling operations reminiscent of widely used ap-
proaches for the spatial aggregation of information. Recur-
rent neural networks (RNNs) have seen an explosion of re-
cent interest as they yield state-of-the-art performance on a
variety of sequence analysis tasks. RNNs provide an attrac-
tive framework for propagating information over a sequence
using a continuous valued hidden layer representation. In
this work we present a complete system for the 2015 Emo-
tion Recognition in the Wild (EmotiW) Challenge. We fo-
cus our presentation and experimental analysis on a hybrid
CNN-RNN architecture for facial expression analysis that
can outperform a previously applied CNN approach using
temporal averaging for aggregation.
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1. INTRODUCTION
Human emotion analysis is a challenging machine learning

task with a wide range of applications in human-computer
interaction, e-learning, health care, advertising and gaming.
Emotion analysis is particularly challenging as multiple in-
put modalities, both visual and auditory, play an important
role in understanding it. Given a video sequence with a
human subject, some of the important cues which help to
understand the user’s emotion are facial expressions, move-
ments and activities. In some cases speech or high level
scene context can also be useful to infer emotion. Most of
the time there is a considerable overlap between emotion
classes making it a challenging classification task. In this
paper we present a deep learning based approach to mod-
eling different input modalities and to combining them in
order to infer emotion labels from a given video sequence.

The Emotion recognition in the wild (EmotiW 2015) chal-
lenge [9] is an extension of a similar challenge held in 2014
[8]. The task is to predict one of seven emotion labels: angry,
disgust, fear, happy, sad, surprise and neutral. The dataset
used in the challenge is the Acted Facial Expressions in the
Wild (AFEW) 5.0 dataset, which contains short video clips
extracted from Hollywood movies. The video clips present
emotions with a high degree of variation, e.g. actor identity,
age, pose and lighting conditions. The dataset contains 723
videos for training, 383 for validation and 539 test clips.

Traditional approaches to emotion recognition were based
on hand-engineered features [17, 28]. With the availability
of big datasets, deep learning has emerged as a general ap-
proach to machine learning yielding state-of-the-art results
in many computer vision and natural language processing
tasks [22, 19]. The basic principle of deep learning is to
learn hierarchical representations of input data such that the
learned representations improve classification performance.

The primary contribution of this work is to model the
spatio-temporal evolution of facial expressions of a person in
a video using a Recurrent Neural Network (RNN) combined
with a Convolutional Neural Network (CNN) in an underly-
ing CNN-RNN architecture. In addition to this, we also em-
ployed an Autoencoder based activity recognition pipeline
for modelling user activity and a simple Support Vector
Machine (SVM) based approach over energy and spectral
features for audio. We also present a neural network-based



feature level fusion technique to combine different modalities
for the final emotion prediction for a short video clip.

Previous work [18, 25] has achieved state-of-the-art re-
sults in the emotion recognition challenge using deep learn-
ing techniques which includes our work that won the 2013
EmotiW challenge. In contrast to [18, 16], which use an
averaging-based aggregation method for visual features in
video, here we employ an RNN to model the temporal evo-
lution of facial features in video. We also explore feature-
level fusion of our modality-specific models and show that
this increases performance.

The remainder of this paper is organized as follows. In
Section 2, 3 and 4 we describe each of the models used for
different modalities followed by Section 5, which provides de-
tails on the fusion methods we applied. Section 6 presents
our experimental results and provides a list of our submis-
sions to the challenge. Finally, in Section 7 we draw some
conclusions from our experiments.

2. SPATIO-TEMPORAL EVOLUTION OF
FACIAL EXPRESSIONS

Modelling the spatio-temporal evolution of visual informa-
tion plays an important role in understanding the behavior
of objects and users in video. Emotion recognition is one
of the tasks which involve modelling the behavior of a user.
In this work, we use a two step approach to modelling emo-
tion as the spatio-temporal evolution of image structure. In
the first step, an CNN is trained to classify static images
containing emotions. In the second step, we train an RNN
on the higher layer representation of the CNN inferred from
individual frames to predict a single emotion for the entire
video. RNNs have undergone a resurgence of interest due
in part to their impressive performance in handwriting and
speech recognition [14, 13]. Much of this interest has been
driven by the stability of learning achieved by the use of so-
called long short term memory (LSTM) units [15]. RNNs
have also proven to be powerful methods for other types of
sequential data including video [1, 10] and natural language
processing [2, 32]. As such we use an RNN structure for
learning a model for video level representation and classifi-
cation. The higher layer representation from the CNN pro-
vides structural information of a given frame and the RNN
models the spatio-temporal evolution of the structure over
time.

Unlike other work involving video and RNN techniques
such as [1, 10], we do not use LSTMs. Here we use IRNNs
[24] which are composed of rectified linear units (ReLUs)
and employ a special initialization strategy based on scaled
variations of the identity matrix. These elements of IRNNs
are aimed at providing a much simpler mechanism for deal-
ing with the vanishing and exploding gradient problem com-
pared to the more complex LSTM framework. Recent work
has compared IRNNs with LSTMs and found that IRNNs
are able to yield comparable results in some tasks, including
problems which involve long term dependencies [24].

We provide a detailed explanation of the CNN structure
in Section 2.1 and of the RNN in Section 2.2. To compare
with the non-sequential approach presented in [16], we also
aggregated CNN features to a fixed-length feature vector
and trained an SVM. This is described in Section 2.3.

2.1 Frame feature extraction using an CNN
The competition dataset has one emotion label per video

which does not correspond to every frame. This introduces
a lot of noise if the video labels are used as targets for train-
ing an CNN on individual frames. Our visual features are
therefore provided by an CNN trained on a combination
of two additional emotion datasets of static images. More-
over, using additional data covers a larger variety in age and
identity in contrast to the challenge data where the same ac-
tor/actress might appear in multiple clips.

2.1.1 Datasets
The additional datasets used in the CNN training con-

sists of two large emotion datasets, namely the Toronto
Face Database (TFD) [31] with 4,178 images and the Fa-
cial Expression Recognition dataset (FER2013) [6] contain-
ing 35,887 images, both with seven basic expressions: angry,
disgust, fear, happy, sad, surprise and neutral.

2.1.2 Pre-processing
To account for varying lighting conditions (in particular,

across datasets) we applied histogram equalization. We used
the aligned faces provided by the organizers to extract fea-
tures from the CNN. The alignment involves a combined
facial keypoints detection and tracking approach explained
in [7]. We shall refer to this dataset as AFEW-faces. Dif-
ferent face detection and/or alignment techniques have been
used for FER2013, TFD and AFEW-faces. In order to be
able to leverage the additional datasets, we re-aligned all
datasets to FER2013 using the following procedure:

1. We detected five facial keypoints for all images in the
FER2013, TFD and AFEW-faces training set using
the convolutional neural network cascade method in
[30].

2. For each dataset we computed the mean shape by av-
eraging the coordinates of keypoints.

3. Datasets have been mapped to FER2013 by using a
similarity transformation between mean shapes. By
computing one transformation per dataset we let the
eyes, nose and mouth be roughly in the same location
retaining a slight amount of variation. We added a
noisy border for TFD and AFEW-faces as faces were
cropped more tightly compared to FER2013.

4. AFEW-faces validation and test sets were mapped us-
ing the transformation inferred on the training set.

We also performed dataset normalization with the mean and
standard deviation image from the combined FER2013 and
TFD (FER+TFD).

2.1.3 CNN Architecture
We trained various CNN architectures on FER+TFD with-

out using any challenge data for gradient computations. For
early stopping we tried both leaving out 1000 samples of
FER+TFD and the challenge data. We observed that the
RNN yields slightly better performance when CNN early
stopping was done on the challenge data as this avoids over-
fitting to FER+TFD. Therefore, for our best CNN struc-
ture, we trained on all FER+TFD and performed early stop-
ping on AFEW-faces train+validation.



We have explored three main CNN structures:

• a very deep structure with small 3x3 filter size [26, 29],

• a three-layer CNN with 5x5 filters [21, 22] and

• a similar three-layer CNN with 9x9 filter size.

The CNN is trained mainly for feature extraction and we
have only used the additional dataset for the training phase.
Therefore, we searched for a structure that better general-
izes to other datasets. Deep structures are known to learn
representations that better generalize to other datasets [29].
However, we observed that the very deep structure quickly
over-fitted to FER+TFD, and generalized badly to the chal-
lenge dataset. This could be due to the relatively small
amount of labeled data available for the emotion recogni-
tion task here. For this reason we have tried a shallower
network with three layers which appears to have moderately
addressed the over-fitting problem. Finally, we increased the
filter size from 5 to 9 and reduced the number of filters from
64-64-128 to 32-32-64. For all of the experiments we used
data augmentation (horizontal flipping with probability of
0.5 and random cropping), as well as dropout (with rate
0.25).

2.2 Learning Sequences Using an RNN
We use an RNN to aggregate frame features for the fol-

lowing reasons:

• The temporal order of frames is respected in contrast
to bag-of-features approaches.

• An RNN has the ability to learn to detect an event,
such as the presence of a particular expression, irre-
spective of the time, at which it occurs in a sequence.

• RNNs naturally deal with a variable number of frames.

RNNs are a type of neural network which transforms a
sequence of inputs into a sequence of outputs. At each time-
step t, a hidden state ht is computed based on the hidden
state at time t− 1 and the input xt at time t

ht = σ(Winxt + Wrecht−1), (1)

where Win is the input weight matrix, Wrec is the recurrent
matrix and σ is the hidden activation function. Each time-
step also computes outputs, based on the current hidden
state:

yt = f(Woutht), (2)

where Wout is the output weight matrix and f is the output
activation function. An example of an RNN in which only
the last time-step produces an output is shown in Figure 1.

We use the IRNN, which as discussed above is a simple
RNN with rectified linear hidden units (ReLUs) and with
a recurrent matrix, that is initialized with scaled variations
of the identity matrix [24]. The identity initialization trick
ensures good gradient flow at the beginning of training and
it allows us to train it on relatively long sequences.

We train the IRNN to classify a video by feeding the fea-
tures for each frame from the CNN sequentially to the net-
work and using the last time-step softmax output as class
prediction. We used Stochastic Gradient Descent (SGD)
with a learning rate of 0.005, gradient clipping at 1.0 and a

Figure 1: Structure of our recurrent neural network.

batchsize of 64 sequences. We experimented by using differ-
ent layers of the CNN as input features and chose the output
of the second convolutional layer after max pooling, as this
performed best on validation data.

2.3 Aggregated CNN Features
As an alternative way of aggregating the frame level struc-

tural representations from the CNN, we employed k-average
pooling together with an SVM for classification as in [16]. In
this approach the per-frame CNN features are averaged into
bins to generate a fixed length vector of size k as video rep-
resentation. Heuristically, we selected k = 15 and we used
the pre-softmax outputs of the CNN as per-frame features.
For videos with a number of frames less than k the frames
are locally repeated until sequence length is k.

The vector representations of videos together with corre-
sponding emotion labels are used to train an RBF-kernel
SVM. The hyper-parameters of the SVM are set via grid
search. As shown in Table 1, the RNN achieves a validation
accuracy of 39.6%, which is significantly higher than the
aggregated CNN. Simple averaging of the per-frame proba-
bilities yielded a validation accuracy of only 23.7%.

3. AUDIO
Given that the primary focus of this work is on vision

based emotion recognition, we simply used the audio fea-
tures employed in [7] for the audio channel of the video clips.
These are based on the approach from [27]. It uses 1582 fea-
tures extracted with the open-source Emotion and Affect
Recognition (openEAR) [12] toolkit which uses openSMILE
[11] as backend.

The toolkit encapsulates multiple low level audio feature
descriptors (LLDs) and different functionals to apply on
them. The feature set consists of 34 energy and spectral re-
lated LLDs and 21 functionals, 4 voicing related LLD × 19
functionals, 34 delta coefficients of energy and spectral LLD
× 21 functionals, 4 delta coefficients of the voicing related
LLD × 19 functionals and 2 voiced/unvoiced durational fea-
tures.



In this work we used Principal Component Analysis (PCA)
based dimensionality reduction as preprocessing on the 1582
dimensional input features and an RBF-kernel SVM for clas-
sification. The hyper-parameters for the SVM are set via
grid search.

4. ACTIVITY
Spatio-temporal transformations of local image features,

or activity, can be an important cue for emotion recognition.
A subset of emotions can be represented as changes in fa-
cial expressions and in some cases the activity of the entire
body of the person. Other approaches, based on vision, de-
scribed in this work mainly deal with analyzing the emotion
in a given video sequence based on static image features and
different ways of aggregating them over time. The activity
analysis pipeline is the only approach which relies on learn-
ing of local spatio-temporal transformations from video.

Our approach for activity analysis is based on the action
recognition pipeline from [20, 23] which was also used for
emotion recognition previously in [16]. The pipeline mainly
consists of three different modules namely, local motion fea-
ture extraction, k-means quantization and SVM based clas-
sification. A Synchrony Autoencoder (SAE) [20] trained on
cropped 3D video blocks of size 16×16×10 (space×space×
time) is used for local motion feature extraction. Figure 2
shows filters learned by the model on the AFEW 5.0 training
set.

5. FUSION
In many discriminative tasks, the fusion of predictions or

representations from models trained using different input
modalities yields a significant improvement. We use two
types of fusion approaches for combining the modality spe-
cific models described in previous sections, feature level and
decision level fusion.

5.1 Feature Level
In this approach a combination of intermediate-level rep-

resentations from the trained models is used as input for
training an additional model on the classification task. For
feature-level fusion we applied a variant of the regularized
feature fusion network from [33]. The feature fusion network
is a Multilayer Perceptron (MLP) with separate hidden lay-
ers for each modality as shown in Figure 3. The outputs
of these layers are concatenated and fed to another hidden
layer which is followed by a softmax layer whose number of
units is equal to the number of emotion classes. The first
layer of the fusion network, consisting of modality specific
layers, is regularized to encourage a common representation
by sharing similar subsets of hidden units between modali-
ties, while still retaining the discriminative features present
in some modalities.

The network is trained with SGD using a learning rate
of 0.1 and gradient clipping using clipping threshold 10.
The objective function is the categorical cross-entropy be-
tween target label and prediction. As input to the fusion
network we used aggregated CNN per-frame features, the
PCA-whitened audio features and the hidden layer activa-
tions of the last time-step of the RNN. We excluded the
activity recognition model from the mix, as it tends to over-
fit its training set. We also explored adding dropout to the
hidden layers to prevent over-fitting on the small challenge

Figure 3: Structure of the feature fusion network.

dataset. The number of hidden layers and their sizes are
selected using the validation set. Our best architecture has
100, 10 and 50 units in the aggregated CNN-, the audio- and
the RNN-specific hidden layers, respectively. The common
hidden layer has 70 units. The search space for determining
the optimal size of the modality-specific layers was selected
considering the input feature sizes and individual models’
performances on the AFEW 5.0 validation set while train-
ing on the train set. More details are provided in Section
6.

5.2 Decision Level
For decision-level fusion, i.e. the combination of classi-

fiers, we used a weighted sum of the class probabilities es-
timated by the modality-specific classifiers and the fusion
network. The combined classifier has one weight per modal-
ity per class and the resulting score for each class is the
weighted sum of all probabilities for the respective class.
The combination weights are determined by random search
[4], which was also used for model combination in the win-
ning approach for the 2013 EmotiW challenge [18].

Weights are sampled uniformly from [0.0, 1.0] followed by
per class re-scaling, so that they sum up to 1. Then the
best sampled weights are chosen based on the validation
performance. Note that unless noted otherwise, we always
use the dataset partition for the random search which was
not used for model training, i.e. for models trained on the
training set, we perform random search on the validation set
and vice versa. After an initial random search with 100,000
iterations, we perform a local random search around the
best set of weights found so far. This local random search
consists of sampling weights from a Gaussian with mean set
to the current best set of weights and standard deviation σ
of 0.5. The current best w̃ is updated as soon as a new best
is found. After every 100,000 iterations, the σ is decreased
by a factor of 0.9 and the local search is stopped when σ
is smaller than 0.0001. We also performed uniform local
search from [w̃ − r, w̃ + r], where w̃ is the current best set
of weights and r is the range in which to search, however
it roughly achieved the same performance. We explicitly
tried all combinations of subsets of modalities and fusion.
Consistently we found that decision level fusion benefited
from including all models.



Figure 2: Subset of filters learned by SAE model on the AFEW5 training set. Left to right: Frames 1,3,5,7
and 9.

Table 1: Training and Validation Accuracies for All
Modalities (Training on Train partition)

Model Training Validation
Activity 0.983 0.266
Audio 0.418 0.332

Aggregated CNN 0.505 0.350
RNN 0.848 0.396

6. RESULTS
In this section, we describe our submissions to the EmotiW

2015 challenge. We provide details on per model training
strategies and variations of our fusion methods. We also
present results and discuss the choices we made in each step.

6.1 Per-model Performance
This work mainly focuses on an RNN approach for visual

features. However, given the challenge context we included
three further models to achieve competitive performance.
Table 1 shows each model’s accuracy on the challenge val-
idation set after training on the training set. The corre-
sponding confusion matrices are presented in Figure 4. The
matrices show different profiles and strengths for specific
emotion classes which is beneficial for combination.

6.2 Feature Level Fusion
As mentioned before, we excluded the activity model from

feature level fusion as it tends to over-fit on its training
partition. This can be seen in Table 1 where activity has an
extremely high discrepancy between training and validation
accuracies. The input features to the fusion network are the
following:

• The first ten components of the PCA whitened audio
features (see Section 3).

• The aggregated CNN features, which are 105-dimen-
sional (7×15 bins) vectors as described in Section 2.3.

• The RNN features, which are the hidden activations of
the last time step. These are the only features which
have been learned discriminatively on the video level
and which therefore contribute strongly to the fusion
network. The number of hidden units in the RNN is
200 (see Section 2.2).

For training the fusion network, we tried replacing the sig-
moid activation function of the hidden layers with rectified
linear units ReLU(x) = max(0, x) and rectified tanh units
RectTanh(x) = max(0, tanh(x)). While this improved the

validation performance by roughly 2%, it did not yield an
improvement on the test performance. One observation dur-
ing training was that the learning curves were oscillating
which made the early stopping unreliable. To stabilize the
learning, we lowered the learning rate to 0.001 from 0.1 and
added momentum of 0.9. Figure 5 compares two learning
curves before and after stabilization. The number of epochs
in each sub-figure corresponds to the selected learning rate.
Our fusion network achieves a validation accuracy of 43.7%,
which is higher than any modality-specific classifier.

6.3 Submissions
Our submissions can be divided into two categories: those

which use the training set for training and the validation set
for early stopping and random search and those for which
the training and validation sets were swapped. For both of
these categories, we also submitted a version where models
were retrained on the full training plus validation set, re-
taining all hyper-parameters including early stopping epoch
number and combination weights. Note that the models
that are CNN-based have also been retrained but not the
underlying CNN as we used additional static emotion data
for training. For all submissions, random search was done
on the data partition that was not used for training the un-
derlying models. For example, if models were trained on the
training partition, random search was performed on the val-
idation set. Searching on the same partition that the models
were trained on was not an option, as random search would
assign high weights to the over-fitters, which would result in
poor generalization performance.

Table 2 lists our submissions with their training, valida-
tion and test accuracies. In the first category we trained
modality-specific models and the fusion network on the chal-
lenge training data and validation data was used for early
stopping. Then for the final predictions we performed ran-
dom search on the validation set. This achieved a test set
accuracy of 44.341%. With the stabilized fusion network
the accuracy improved to 48.979%. Retraining the models
with the combined training plus validation set, keeping the
hyper-parameters of experiment 2, yielded a test accuracy
of 50.463%.

In the second category, with swapped training and vali-
dation sets, our initial submission achieved a test accuracy
of 50.092%. Here the stabilized fusion did not improve the
performance, yielding a test accuracy of 47.680%. The re-
trained version achieved our best result of 52.875%. Note
that for each category we picked the best submission for re-
training. Random search as the last step in our pipeline has
a big influence on the generalization potential of the whole



(a) Aggregated CNN (b) Audio

(c) Activity (d) RNN

Figure 4: Confusion matrices on the challenge validation set.

Table 2: Our submissions with training, validation and test accuracies (in percent) for the EmotiW 2015
competition (bold font shows the best accuracy)

Sub Train Valid Test Method
1 86.216 54.716 44.341 Training on Train, Validation on Valid
2 81.997 54.447 48.979 Training on Train, Validation on Valid, stable fusion
3 - - 50.463 Training on Train+Val, hyperparams from submission 2, stable fusion
4 52.320 71.967 50.092 Training on Val, Validation on Train
5 52.742 68.463 47.680 Training on Val, Validation on Train, stable fusion
6 - - 52.875 Training on Train+Val, hyperparams from submission 4
7 - - 49.907 Random Search over combinations of submission 3 and 6 on Train+Val



(a) (b)

Figure 5: Comparison of the learning curves (a) before and (b) after stabilization.

model and likely benefits from the larger training set. This
explains the higher performance of the swapped partitions.

Our last submission was an attempt to combine our two
best submissions that were retrained on the training plus val-
idation set. We combined those two using the same decision-
level fusion strategy as before. The inputs to the random
search were the probabilities predicted by the two models.
A random search on these two models was performed on the
full training plus validation set. The resulting test perfor-
mance was only 49.907%. This might be explained by the
fact that the whole data set has been seen which could have
led to over-fitting.

7. CONCLUSIONS
We found that the spatio-temporal evolution of facial fea-

tures is one of the strongest cues for emotion recognition.
We presented the application of an RNN for modelling this
spatio-temporal evolution via aggregation of facial features
to perform emotion recognition in video. Our experiments
in Section 2.3 have shown that this approach outperforms
all other modalities, the averaging of per-frame vision-based
classifications, and also the more sophisticated aggregation
method employed by the 2013 challenge winners [18].

Furthermore, we explore two fusion methods, operating on
the feature and on the decision level. Our feature-level fu-
sion network combines features from different modalities and
achieves a higher validation accuracy than any of the single-
modality classifiers. Our experiments show that feature-
level and decision-level fusion are complementary, and when
combined they achieve a higher classification accuracy. How-
ever, care needs to be taken to prevent over-fitting, either
by excluding strong over-fitters, as we did with the activity
recognition model in the fusion network, or by using different
dataset partitions for combination than for model training,
as done in the random search.

We found it difficult to draw conclusions from some of
our submission results. This might be caused by the large
number of ambiguous cases that exist in this domain. We
found that a fairly large number of training videos could be
argued to show a mixture of two or more basic emotions
(such as a mixture of surprise with fear or happy). This

suggests that exploring the use of more than a single label
for emotion recognition might be a useful direction for future
research.
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